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The exclusion process in which particles may jump any distance /=1 with the probability that decays as
1-0+9) i5 studied from the coarse-grained equation for density profile in the limit when the lattice spacing goes
to zero. For 1 <o <2, the usual diffusion term of this equation is replaced by the fractional one, which affects
dynamical-scaling properties of the late-time approach to the stationary state. When applied to an open system
with totally asymmetric hopping, this approach gives two results: First, it accounts for the o-dependent
exponent that characterizes the algebraic decay of a density profile in the maximum-current phase for 1 <o
<2, and second, it shows that in this region of o the exponent is of the mean-field type.
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I. INTRODUCTION

The asymmetric exclusion process (ASEP) is one of the
simplest models for transport in which the net flow of par-
ticles is maintained by contact with two reservoirs at differ-
ent densities p; and pg. It emerges in the wide range of
nonequilibrium phenomena, such as biological transport
[1,2], surface growth [3,4], and traffic flow [5]. In the pres-
ence of the net current flowing through the system, the
boundary conditions generally play an important role in de-
termining the bulk properties [6]. The phenomenological
domain-wall approach [7] and the exact solution [8,9] re-
vealed that the model exhibits phase transitions both of the
first and the second order. Description of these new phenom-
ena contributed to considerable efforts taken in the last sev-
eral decades in order to determine the nature of phase tran-
sitions in system held far from equilibrium. Important
aspects of these efforts concern a better understanding of
those parameters (e.g., symmetry of the Hamiltonian, dimen-
sionality, and range of the interactions) that usually deter-
mine an underlying universality among various models of
equilibrium phase transitions, but remain important for out-
of-equilibrium phase transitions as well (for a recent review
on universality classes in nonequilibrium lattice models, see
Ref. [10]).

In that spirit, one of the striking features of ASEP is the
robustness of its phase diagram to various modifications.
Among a number of different extensions of this model that
have been proposed, the universal character [6,11,12] of the
continuous phase transition has been verified in a number of
cases, including ASEP with parallel update [13,14], partially
asymmetric exclusion process [15], and particle-wise disor-
der [16]. With the purpose to examine the impact of the
long-range hopping on the character of the phase transitions,
a generalized model was introduced [17] in which particles
may jump any distance /=1 with the probability that decays
as 71*9)_Due to the long range of hopping, the exchange of
particles with reservoirs is possible at each site of the lattice,
which can be compared to the system with a bulk reservoir
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[18,19]. For o>1, this generalized model has the same
phase diagram as the short-range case consisting of the low-
density, high-density, and the maximum-current phase, but
different effects are found at the transition lines. Besides the
localization of the domain wall at first-order phase transition,
the continuous phase transition to the maximum-current
phase is accompanied by the exponent that differs from the
short-range value 1/2 in the region 1 <o <2, where its de-
pendence on o was given by the conjecture based on numeri-
cal simulations [17].

In the present work we show that the conjectured expres-
sion for the o-dependent exponent can be obtained in the
mean-field approximation. We consider the hydrodynamic
approach that gives a coarse-grained equation for the density
profile and we apply it to an open system. Within the same
formalism we examine dynamical scaling properties of this
model in more general asymmetric and symmetric cases with
periodic boundary conditions and confirm the predictions by
numerical simulations.

The work is organized as follows. In Sec. I we consider
the process on the infinite lattice and find the continuous
limit of lattice equations in a general case including both the
symmetric and the asymmetric exclusion process. In Sec. III
we analyze the effects of introducing the boundary condi-
tions that correspond to those of the maximum-current phase
and deduce the analytical expression for the o-dependent
exponent. Direct numerical solution of lattice equations in
the mean-field approximation is also given. Section IV is
dedicated to the analysis of the relaxation to the stationary
state. A brief summary of results is given in Sec. V.

II. HYDRODYNAMIC APPROACH

Let us first consider the exclusion process on the infinite
one-dimensional lattice, where each site n is either occupied
by a particle (7,=1) or empty (7,=0). Dynamics of this pro-
cess is described as follows. At any given time ¢, a randomly
chosen particle at site n attempts to jump either to the site
n—1 with a probability g, or to the site n+/ with a probability
p=1—¢q. Distance />0 is chosen according to the probability
distribution p,;=1"1%9)/ {(o+1), where {(z) is the Riemann ¢
function. Generally, one has p # ¢ (the asymmetric exclusion
process), or p=g (the symmetric exclusion process). In the
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limit o— <0 the hopping reduces only to nearest neighbors,
and the process is identical to the exclusion process with
short-range hopping.

These dynamics correspond to a continuous-time Markov
process in which the probability P(C,t) of the system being
in a state C={r,},c7 at time r evolves according to the fol-
lowing master equation:

dP(C,1)
ot

= > W(C' — C)P(C',1) = >, W(C — C")P(C,1),
c' c’

(1)

where W(C— C’) is the transition probability per unit time
for a system to go from the state C to the state C'. In the
model considered here, the nondiagonal elements W(C
— ') are equal to ¢-p,_, if C'=C"™" and m<n, or to
P Pon if C'=C"" and m>n, where C"™ is the configu-
ration obtained from C by moving a particle from a site n to
an empty site m (if possible).

Starting from the master equations (1), lattice equation for

the time-dependent average density profile {(7,)(¢)
=3.7,P(C,1) reads as
(0 = (K @
dr " "
where
K= 2 p A~ A7)~ (0= ) 2 p,
r>0 r>0
X[(l - Tn)A:—Tn + TnA;Tn] (3)

and the following notation has been used, Af7,=7,,,—7,
and AL 7, =7,—7,_,.

Basically, the hydrodynamic equation that we are inter-
ested in can be obtained by a suitable coarse-grained proce-
dure when the lattice spacing a goes to zero. This is usually
referred to as the hydrodynamic limit and describes the time
evolution of a system at large time and space scales where
the stochastic details of the particular process have been
smoothed out. So far, rigorous results have been obtained in
the short-range [20,21] and recently in the long-range case
for p=q [22]. In the short-range case, the equation for the
coarse-grained density p(x,7) is given by the inviscid Bur-
gers’ equation in the asymmetric case p # g,

P _ O
P (r-9q ax[p(l p)] (4)

and by the normal diffusion equation in the symmetric case
P=q,

_1p "
gt 29x%

In the long-range case [22], diffusion equation (5) is replaced
by space-fractional diffusion equation in the region 1 <o
<2,
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(;—(f =v,A,¢(x,1),

1<o0<2, (6)
where A, is fractional Laplacian (A5) and w,=-2pI’
X (=a)cos(mo/2)/ {(o+1)>0.

To study the asymmetric case we adopt the nonrigorous
approach that consists of taking the mean-field approxima-
tion (7,7,,) —{7,){(7,), n#m and applying it directly to lat-
tice Egs. (2) and (3). Notice that the same approach, when
applied to the short-range case, gives the correct hydrody-
namic limit although the starting mean-field assumption is
only approximate (in the symmetric case, the assumption is
not necessary since the equation is linear). The reason for
this lies in the fact that for certain initial profiles the station-
ary state becomes a product measure (i.e., a factorized state
without correlations), so in this case the mean-field approxi-
mation becomes exact. It is worth mentioning that the fac-
torized state is preserved even upon the introduction of long-
range hopping [23], provided that a hopping probability has
a finite mean (in the case of p;~{~*9), this is true for o
>1).

Applying the mean-field approximation to lattice equa-
tions (2) and (3), we obtain the following equations:

d
W= AL A7) + (39 + 90— 9)
t r=>0 2
X2 pAfd, + AT, (7)
r>0

where ¢,(t)=(7,)(t)—p denotes deviation from the uniform
profile of density p and Ap=p—1/2 is introduced in order to
distinguish two cases, p=1/2 (Ap=0) and p# 1/2 (Ap#0).
To obtain the equation for the macroscopic profile ¢(x,7) in
the continuous limit, we adopt the procedure given in [24].
Basically, one assumes that ¢, () are coefficients in the Fou-

rier series of some function ¢(k,?) defined on [-K/2,K/2],

k)= 2 put)e ™, (8)

n=—0

where x,=na and a=2/K is lattice constant. Then, Eq. (7)
can be written in the Fourier space

d . R N
r P(k,1) = Pk, 0)[D(ka) — D(0)] + Apep(k,1)B(ka)

1 K72 K72 R R
+> dklf dk2¢(kl’t)¢(k29t)

K2 -K/2 -K/2
% E ei(k1+k2—k)naB(ka)’ (9)
n=—0

where D(ka) and B(ka) are given by

1 . )
D(ka) = E[Lim(e”‘”) + Lig (e )], (10a)
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B(ka) = (p = @)[Liyy1 (™) = Liy,  (e7*9)],

and Li,(z) is the polylogarithm function. Using the series
representation of the polylogarithm function valid for nonin-
teger v#1,2,3,... [25], one obtains

(10b)

1 T o
D(ka) — D(0) = m |:2F(— 0')0087|k| a
o+ 1-2n) " om
2% T( k)2 a® :|, (11a)
Blka) = g(‘;"l) [- 2iT(~ (r)sin?sgn(k)|k|”a”
{o+2-2n) o0y 50y
2% -1 = (k) a ] (11b)

Finally, one defines the macroscopic density profile ¢(x,7) as
the inverse Fourier transform of (k,r), obtained from
&(k,7) in the limit a—O0 after the appropriate scaling ¢
— t/a® has been taken, where z is the lowest exponent in a in
(11a) and (11b). The latter should not be confused with dy-
namical exponent z considered in Sec. I'V.

The symmetric case (p=q). From (11a) it follows that z

=min{o,2}. For ¢>2 under diffusive scaling (z=2) one ob-
tains the normal diffusion equation
ap PP
— =y, >12, 12
o a7 (12)

with the diffusion coefficient v,={(o—1)/2{(c+1)>0. On
the other hand, in the region 1 <o <2 one obtains the space-
fractional diffusion equation

I

A
S = VoBed

1<o0<2, (13)

where v ,=-I'(-=0o)cos(ma/2)/{(o+1)>0, as in Ref. [22].

The asymmetric case (p # q). From (11a) and (11b) it fol-
lows that z=min{o,1}. For ¢>1 under Eulerian scaling (z
=1) this gives the inviscid Burgers’ equation with the addi-
tional drift term —v 9/ dx¢(x,1),

J 0 0
_¢=—U_¢—K¢_¢, o>1, (14)
ot ox ox

where the collective velocity v and « are given by

v=p-9 2= L2 )
p=p
2.
k=-2p-gh(o)= L2 (16)
P Tp=p

In the above expressions, \(o) is the average hopping length
and j(p) is the macroscopic current
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H0)= (- @1 = p A= (1)
Lo+1)
The original inviscid Burgers’ equation (4) is then recovered
either by Galilean transformation x—x—uvt or by taking p
=1/2.

We can go further and take a look at the next higher-order
terms in (11a) and (11b). For 1 <o <2 there are two terms,
both proportional to a”. The first one follows from (11a) and
corresponds to the fractional Laplacian A ¢ (also known as
the Riesz fractional derivative), while the other one is non-
linear and reads ¢H ¢, where H, is defined in (A7). For o
> 2, the next term in (11a) corresponds to the usual diffusion
term Ag(x) and is proportional to a. If we neglect the non-
linear term ¢H ¢, we obtain the following equations:

s ‘!

;f;: M T ¢, 1<o<2, (18)
¢ d¢*
¢ =av,Ag® — k* ¢, o>2, (19)
at ox

where ¢(x,7) is replaced with ¢“(x,7) to emphasize its de-
pendence on a. These additional viscous terms do not repre-
sent the true lowest-order correction, but are rather kept due
to the smoothening (regularizing) effect (see [26] and refer-
ences therein) they impose on the solutions of the inviscid
Burgers’ equation that could otherwise develop discontinui-
ties (shocks) [27]. As we show in Sec. IV, they also play an
important role in selecting the way in which the system re-
laxes to the stationary state.

III. APPLICATION TO AN OPEN SYSTEM

We now wish to apply hydrodynamic equations (18) and
(19) to a finite system in contact with left-hand and right-
hand reservoirs of densities p;=a and pp=1-0, respec-
tively. Furthermore, we consider only the stationary limit
where d¢(x,1)/dt=0 so that ¢(x,r) — ¢(x). This case was
already studied by Monte Carlo simulations with random
sequential update [17] in the totally asymmetric case (p=1,
¢q=0) for various values of @ and B. The obtained density
profiles reproduced the phase diagram of the short-range
model provided that the current was renormalized by the
average hopping length N\, (0)={;(0)/{(0+1), where
{(z2)=21 171+ is the partial sum of the Riemann zeta func-
tion {(z) and L is the number of sites on the lattice.

However, a difference was observed at the first-order tran-
sition line and in the maximum-current phase. Apart from the
localization of a domain wall at the first-order transition line
a=[<1/2, the exponent that characterizes the algebraic de-
cay of density profile in the maximum-current phase ap-
peared to be o dependent. In particular, the results obtained
by Monte Carlo simulations in the maximum-current phase
for a system of size L showed that a deviation of density
from its bulk value 1/2, Ap(n,L)= , obeys the
scaling relation

Ap(n,L) = L"*f(n/L), (20)

where f(x) ~x"* for x<<1/2 and u was conjectured to be
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FIG. 1. (Color online) A schematic picture of an open system
with L=6 sites. A particle at site » may jump to the right-hand
reservoir in a number of ways for which n+7> L (dashed lines), all
adding up to the total probability 8, to remove the particle from a
system. Similarly, a particle may be added from the left reservoir to
an empty site n only from those sites in the left-hand reservoir that
are within a distance n=/=L from the site n.

Jo-11
M =min 5 5[ (21)

In the rest of this section, we show that this particular depen-
dence on o can be explained within the hydrodynamic ap-
proach. Our approach follows the one of Krug [6], who ap-
plied the viscous Burgers’ equations (19) in the stationary
limit to a finite system of size / in contact with two reservoirs
in order to investigate boundary-induced phase transitions in
the asymmetric exclusion process with short-range hopping.
Imposing the boundary conditions p(0)=p, and p(I)=0, he
was then able to show the emergence of characteristic length
¢, diverging for p, greater than the critical density p*=1/2
and finite &~ (p*—py)~' for py<p*. Thus, the continuous
transition occurs between the phase in which p(x) decays
exponentially to the bulk value p# p* and the power law in
which ¢ diverges and p(x) displays algebraic decay with the
exponent =1, p(x)—p*“~a/x. This approach gives the cor-
rect qualitative picture that explains the second-order phase
transition in the asymmetric exclusion process with open
boundaries, but the exponent itself is wrong and should be
1/2 [8,9] instead of 1 [28]. The reason lies in the fact that in
general the steady state of an open system is no longer given
by the product measure but displays correlations, while these
are by default neglected in the mean-field approximation.
Let us start by assuming that particles jump only in one
direction, so that p=1 and ¢=0. Due to the finiteness of the
system, a distance 1 =/=L is now chosen according to the
probability p,;=1"1*?/,(a+1). As it was pointed out in our
previous work [17], the long-range hopping in a finite open
system raises the necessity of “nonlocal boundary condi-
tions,” in the sense that the exchange of particles with reser-
voirs now takes place at each site as if there was a bulk
reservoir [18,19,29]. As Fig. 1 shows, one can see that, for
example, a particle at site n is removed from the lattice with
the probability S,, which is the sum of probabilities of all the
possible jumps outside the lattice. This includes all the jumps
of size [ for which L—n+1=I[=L, multiplied by the prob-
ability 1—pr=p that the right-hand reservoir is empty

L

1
g=—Lt— '3

- C(o+ 1) 1 17+

(22)

Similarly, a particle from the left-hand reservoir is added to
an empty site 1 =n =L with a probability «,, which is the
total probability of all the possible jumps from the left-hand
reservoir to an empty site n, multiplied by the probability
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p; =« that the left-hand reservoir is not empty,
L
a E 1

a, = gL(U+ 1) et la’+1 :

(23)

A precise meaning of these boundary conditions can be given
by noticing that in the case of the open boundary conditions,
the lattice equations for the average density (7,)(f) in the
mean-field approximation

n-1

=1 =)+ D o)1 ()
1 m=1

L
- 2 pm—n<Tn>(l - <Tm>) - Bn<7-n>’ (24)

m=n+1

L
§<n> = ay(1 () = S por(m)(L = (7)) = Byém),
t m=2

(25)

J -1
E<TL> =a, (1 (7)) + E Pl T (1 ={71)) = Br{7p),
m=1

(26)

can be written in the same form as in (2) and (3) if we extend
the system for additional L sites to the left and the right, but
require that (7,)=a if —-L<n=0 and {(7,)=1-8 if L<n
=2L. (A similar reasoning that fixes the values of function in
the extended region was used for the numerical solution of
the boundary-value problem that involves fractional deriva-
tives [30].)

In order to examine the scaling property (20), we suppose
that away from the left-hand boundary (but substantially far
away from the right-hand one), density profile ¢,=[(7,)
—1/2| decays algebraically with some unknown exponent
>0, ¢,~n*=a"/x". A rough estimate of the length scale
beyond which this asymptotic behavior sets in is given by
Is~al(py—1/2)"*, where py={7;). To employ the hydrody-
namic equation for this problem, we assume that the size of
the system is large enough that the influence of the right-
hand reservoir may be ignored. In that case, we may fix the
value of ¢(x) to be equal to ¢(0)=py,—1/2 for all x<O0.
Inserting ¢(x) in Eq. (18) yields the following estimate of
various terms for x> /g:

— k() ﬁg(z;(x) ~ _ gl a2, (27)
X
a” ', A p(x) ~ —O_gif_oj l)a”_lx‘” +O0(a" xRy,

(28)

where the most dominant part of the expression (28) follows
from the “boundary” condition ¢(x)=¢(0) for x<0. [As the
nonlinear term ¢H ;¢ is concerned, one can show that it is of
the order O(a”'*#x~#).] Since the left-hand side of Eq.
(18) must be zero in the stationary regime, terms (28) and
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FIG. 2. (Color online) A comparison of density profiles obtained
in the mean-field approximation (line) and by Monte Carlo simula-
tions (symbols) for =0.2, 8=0.7, and o=1.8 (low-density phase).

(27) must be of the same order, which gives the scaling ex-
ponent g=(o—1)/2, both in powers of a and x.

For 0>2, the boundary effect due to the fixed value of
¢(x) for x<O requires that one includes both aA¢(x) and
a®'A,¢(x) in the equation for ¢(x). This gives the follow-
ing estimate for aA¢(x):

avA(x) ~ |y (1 + pa' k2, (29)

while the expressions (27) and (28) remain the same. This
leads to equation 2=min{c—1,1+ f} that has two different
solutions depending on the value of o: g=(c—1)/2 for 2
<0<3 and g=1 for o>3. To summarize, we can write

ﬁ:min{ggl,l}. (30)

For 1 <o <2, this result is exactly the same as (21). How-
ever, it fails to give the correct value of o for which the
short-range regime sets in: According to (30) this value is
o=3, instead of o=2. This failure arises as a result of ne-
glecting the correlations in the mean-field approach, so that
for 0>2 the nonlocal effect of the boundaries is overesti-
mated.

Numerical solution of discrete mean-field equations. The
expression (30) can be checked directly by the numerical
solution of the stationary lattice equations (24)—(26) in the

0.8
0.71
0.6

A

0.5

\%

0.4

0.3

030 1n60 150 200

FIG. 3. (Color online) A comparison of density profiles obtained
in the mean-field approximation (line) and by Monte Carlo simula-
tions (symbols) for a=1.0, B=1.0, and o=1.8 (maximum-current
phase).
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FIG. 4. (Color online) A comparison of density profiles obtained
in the mean-field approximation (line) and by Monte Carlo simula-
tions (symbols) for @=£=0.2 and o=1.5 (coexistence line).

mean-field approximation. This case reduces to a problem of
finding a zero of a system of L nonlinear equations in L
variables, which can be done numerically. For this purpose,
we used the HYBRD algorithm taken from the MINPACK
library [31] for various a, B, and o. In the region 1 <o<2,
the results reproduce the phase diagram well and the profiles
coincide with the results of the Monte Carlo simulations
(Figs. 2 and 3). The only exception is the line a=8<1/2
with a sharp domain-wall located in the middle (Fig. 4). This
is similar to the mean-field solution in the short-range case
[28] which does not take into account fluctuations of the
position of the domain wall. These fluctuations for the long-
range case [17] can be taken into account using the domain-
wall approach in the same manner as it was done for the
short-range case with the bulk reservoir [32], where the do-
main wall performs random walk in a potential well. As far
as the maximum-current phase is concerned, density profiles
satisfy the scaling relation (20) along with the mean-field
exponent & for all 1 <o <2 (Fig. 5), but the profiles them-
selves no longer match those obtained in the Monte Carlo
simulations as soon as o>2 (Fig. 6). This is expected since
for >2, i reads min{(o—1)/2,1} while the correct value is
1/2.

Let us conclude this section by giving a simple picture
that accounts for the o-dependent exponent u for 1 <o <2

>

035 1<o<2 o L =800 i
3o o L= 1600
Mo 2 L =3200
_0.25¢ R
5078
= 02
(=} L
S
= 0.15

o
=

0.051

L L B e L1
0.02 0.03 0.04 0.05
n/L

FIG. 5. (Color online) Deviation ¢,(L) of a density profile from
its bulk value p=1/2, obtained from the numerical solution of
mean-field equations for various system sizes L=800, 1600, and
3200 (a=B=1.0) and for =1.2 and 1.8 (from top to bottom). The
profiles ¢,(L) for the same o are scaled to the profile ¢,(Ly) (L,
=3200) according to Eq. (20) with exponent w= g given by (30).
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FIG. 6. (Color online) A comparison of density profiles obtained
in the mean-field approximation (line) and by Monte Carlo simula-
tions (symbols) for @=1.0, 8=1.0, and o=2.5 (maximum-current
phase).

and its change to the short-range value 1/2 for o> 2. First,
notice that the nonlinear term ¢d ¢/ dx appears in the hydro-
dynamic equations no matter what the range of the hopping
is. This implies the possibility of reproducing the same
o-dependent exponent by replacing the long-range hopping
with the short-range one, provided that the nearest-neighbors
hopping rate is increased by the factor A(o) and that the bulk
reservoir is kept with the same o-dependent rates «,, and f3,,.
Indeed, density profiles obtained by Monte Carlo simulations
of such a modified model reproduce the scaling property (20)
with the exponent (o—1)/2 for 1 <o<?2 and 1/2 for >2.
As far as the large-scale behavior is concerned, the original
model is thus reduced to the short-range one with the addi-
tional external field that originates from the long-range ex-
change of particles between the reservoirs and the bulk,
while all the other contributions that are a result of the long
range of hopping are of higher order. [For example, this is
the case with the hopping from one site in the bulk to an-
other. As already mentioned earlier in this section in the con-
text of the hydrodynamic approach, in the maximum-current
phase, the nonlocal term ¢H ¢ is of order O(a? '*Ex=o-#)
and does not affect the scaling properties.]| Since the external
field itself exhibits a power-law dependence in the position
on the lattice, it affects the scaling exponent in the
maximum-current phase. However, the latter is true only for
1 <o0<2, where the influence of the boundaries is stronger
than that of the correlations. The boundary value 0=2 may
be reasoned by looking at the average distance 7, (o)
=2 n-a,/a=2,(L-n+1)-B,/B at which the particles are
created and annihilated [17]. Since 7y, (o) diverges with the
system size L as L>~ for 1 <o <2 and tends to a finite value
for 0>2, the influence of the external field becomes local-
ized near the boundaries for 0>2 and the exponent u
changes to its short-range value 1/2.

At this point, it is useful to give a more detailed compari-
son between the present model and the (short-range) model
of TASEP with Langmuir Kinetics [18,19]. In the latter case,
particles are created and annihilated in the bulk with rates ),
and (), respectively, that depend on the system size as L.
In the more general case [29], these rates have been extended
to Q,,0p~ L% 1<a<2, which is the same power-law de-
pendence displayed by «,, and B, [17] with a=0o. As a result
of this dependence, both models exhibit localization of the
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domain wall at the coexistence line a=5<1/2 for 1<a
<2, where the width of the domain wall L=*2 is determined
only by the a-dependent potential well in which the domain-
wall performs a random walk [17,20,32]. On the other hand,
the distinction between these two models becomes pro-
nounced in the maximum-current phase, where the fact that
the rates «,, and 3, depend on position on the lattice becomes
important. This is in contrast to the short-range case with
bulk reservoir where the creation and annihilation of par-
ticles with homogeneous rates does not affect the scaling
exponent which remains 1/2 for all 1 <o <2, but merely
determines the characteristic time that particles spend on the
lattice [29].

IV. DYNAMICAL SCALING

Another issue we wish to address here concerns the
dynamical-scaling properties of the late-time approach to the
stationary state. In the short-range exclusion process, the
longest relaxation time 7 scales with a system size L as 7
~ L*, where z equals 2 for the symmetric (p=¢g) [33] and 3/2
for the asymmetric case (p# ¢q) [33-36]. These exponents
were brought into connection with dynamical exponents of
the corresponding hydrodynamic equations with additional
noise term. In particular, dynamical exponents z=2 and z
=3/2 correspond to those of the noisy Edwards-Wilkinson
(EW) [37] and the noisy Burgers’ equation [38], respectively,
where the latter can be mapped to the Kardar-Parisi-Zhang
(KPZ) equation [39] of surface growth.

Generally, the late-time characteristics of a system can be
probed by looking at the two-point autocorrelation function
which in a translationally invariant system takes the form

Clx,1) = ((0,0) (1)), @31

where the averaging (---) is taken over the noise histories.
For processes described by EW or KPZ equations, C(x,?) is
known to give the following scaling relation:

Clx,1) = x2X2F(1/x7), (32)

where y denotes the roughening exponent and is equal to 1/2
in both cases [38,40].

Both EW and KPZ equations have been generalized by
replacing the usual diffusion term with the fractional one
[41,42]. This gives the fractional EW equation

oh
—=vAh+ 7,
ot I n

0<o=2, (33)
where ¢(x,1)=0h(x,t)/dx and 7(x,r) is the noise. A simple
dimensional analysis gives the values of exponents y=(o
—1)/2 and z=0 [42]. On the other hand, the fractional KPZ
equation,

oh A h A(ah>2 0<o=2 (34)

= + - — + b - b

at g 2\ dx g 7
displays a more complex behavior with various values of y
and z depending on the value of o and whether the spatial
correlations of the noise are relevant or not [41]. Particularly,
in case these correlations are irrelevant, there is a weak-
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FIG. 7. (Color online) Time decay of the two-point autocorrela-
tion function C(0,7)~¢"* for the symmetric exclusion process
with long-range hopping on the half-filled periodic lattice (L=10%,
averaged over 107 independent MC runs). Dashed lines refer to the
expected value of z=min{c,2}.

coupling regime for 0<<3/2 with the same critical exponents
as in the fractional EW equation (33), i.e., y=(o—1)/2 and
z=0, and a strong-coupling regime for o>3/2 with the
usual KPZ exponents y=1/2 and z=3/2.

To compare this picture with the late-time approach to the
stationary state of the exclusion process with long-range
hopping, we computed the corresponding two-point autocor-
relation function C(i—j,7) using Monte Carlo simulations in
a system with periodic boundary conditions. The averaging
was taken over 107 independent runs with L=10* for times
up to =100 Monte Carlo steps per site. Dynamical exponent
z was then extracted from the time decay of the peak
C(0,1) ~ ¢V [43]. The results for various ¢ are presented in
Fig. 7 and Fig. 8 for the symmetric and the asymmetric case,
respectively. In the symmetric case, dynamical exponent is in
good agreement with z=min{co,2} predicted by the fractional
(1<0<?2) and the normal (o>2) EW equation. In the
asymmetric case, results presented in Fig. 8 confirm a change
in the exponent at 0=3/2 from the weak-coupling to the
strong-coupling regime according to the predicted value z
=min{o,3/2} of the fractional KPZ equation with irrelevant
spatial correlations of the noise. In the interpretation of Ref.
[41], this change reflects a tendency of a system to relax
through its fastest “component” that has a lower value of z.

FIG. 8. (Color online) Time decay of the two-point autocorrela-
tion function C(0,7)~ ¢ for the asymmetric exclusion process
with long-range hopping on the half-filled periodic lattice (L=10%,
averaged over 107 independent MC runs). Dashed lines refer to the
expected value of z=min{o,3/2}.
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V. CONCLUSION

In this work we studied the large-scale dynamical and
stationary properties of the exclusion process with long-
range hopping where each particle may jump any distance
=1 with the probability that decays with [ as p;~ [~!*?). We
started on an infinite lattice with no boundary conditions
present and calculated the continuous limit of lattice equa-
tions in the Fourier space [24]. For the symmetric hopping
this yields the same result as in Ref. [22] in which the frac-
tional diffusion equation replaces the usual one for 1 <o
<2. For the asymmetric hopping, we adopted the nonrigor-
ous approach that consists of decoupling lattice equations by
means of the mean-field approximation. As in the short-range
case, the result is still given by the inviscid Burgers’ equa-
tion, but the particle current j(p)=(p—g)\(o)p(1—p) has in-
creased by the factor AN(o)={(a)/{(o+1). A true signature of
the long range of hopping was found by inspecting the
lowest-order corrections in powers of a which in this case
correspond to the fractional Laplacian for 1 <o <2 and the
usual one for o>2. If these terms are kept, the equation
becomes equivalent to the deterministic part of the fractional
(1<0<?2) [41] and the original KPZ equation (o>2) [39].
To check this connection we analyzed the late-time approach
to the stationary state in a finite system with periodic bound-
ary conditions. For that purpose we extracted dynamical ex-
ponent from the time decay of the autocorrelation function
obtained from Monte Carlo simulations and compared it to
the dynamical exponent z=min{co,3/2} of the fractional
KPZ equation [41]. A very good agreement of these two
exponents lead us to the conclusion that the system always
relaxes through its fastest “component” that has the lower
value of z [41]. Similar analysis was also carried out for the
symmetric case yielding a very good agreement with the
known exponents z=0 and z=2 of the fractional (1<o
<2) and the usual Edwards-Wilkinson equation (o >2), re-
spectively.

In the case of the open boundary conditions, the above
approach was applied only phenomenologically. In addition,
the long range of hopping in a finite system introduces ‘“non-
local boundary conditions” by means of the inhomogeneous
external field that creates and annihilates particles at each
site. In the maximum-current phase, this causes the change in
the exponent u that determines the algebraic decay of den-
sity profile. The resulting exponent obtained in the mean-
field approximation justifies the earlier conjecture [17] that
pu=(0—1)/2 for 1 <o <2. We argue that the short-range re-
gime sets in immediately after, for o=2.
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APPENDIX: RIESZ FRACTIONAL DERIVATIVE

Consider the left- and right-hand Riemann-Liouville frac-
tional derivatives ;DY and ,D; of order o, respectively,
whose action on the suitable function f(x) is defined as [44]
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o _;d_n ’ _ gyn—o-1
D= f fOE=o"1, (A1)

S DU b
Dpf(x) = ﬁﬁf fEE-0)"1 (A2)

where n is the smallest integer exceeding o. For a=—% and
b=, integrals (Al) and (A2) have the following simple
property with respect to the Fourier transform F:

FL.DIf(x)} = (= ik)f(k), (A3)

F{DIf(0)} = (ik) k), (A4)

where f‘(k)z}'{f(x)}. If we now take the linear combination
of DY and Dy given by

PHYSICAL REVIEW E 77, 051116 (2008)

D7+ Dy,

Aaf(x) == 2 cos(mar2)’

(AS)

we obtain the Riesz fractional derivative (also known as frac-
tional Laplacian) with the following property:

FIAF )} =~ |k|7f (k).

On the other hand, the first term in (11a) and (11b) corre-
sponds to the following linear combination of _, D} and D7:

(A6)

Hf(x) = =52 A7
) = S n(mor2) (A7)

with the following property:
F{Hof (0} == i sgn(k) k|77 (k). (A8)

Both A, and H, are special cases of a more general frac-
tional derivative defined as the inverse of the Feller potential
(see [44] for details).
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